

Universität Stuttgart

Institute of Nuclear Technology and Energy Systems

Prof. Dr.-Ing. Jörg Starflinger Institute of Nuclear Technology and Energy Systems

Objective:

The objective of this work is to further develop and improve the calculation routines for the thermodynamic design and optimization of a supercritical (sCO₂) recompression cycle.

Background:

sCO₂ is a promising working medium for various next-generation applications, both in the field of renewable and conventional power generation (project sCO2-flex, SOLARSCO2OL, ShunShot, Misha) and in residual heat removal (project sCO2-4-NPP).

Within the scope of this work, the thermodynamic design of a recompression sCO₂ cycle is investigated and optimized under various boundary conditions and constraints. Starting from existing Matlab routines, the stability, accuracy and speed of the calculation is improved. Then, the optimized thermodynamic design is determined for different boundary conditions and constraints.

Approach:

- Literature study on recompression sCO2 cycles
- Familiarization with the existing Matlab code
- Improvement of the code (e.g. stability, accuracy and speed)
- Optimization considering different boundary conditions and constraints
- Thesis preparation and presentation

Requirements:

- Fundamentals of thermodynamics
- Experience in programming preferably in Matlab
- Analytical thinking and self-initiative

Start: as soon as possible

Contact: Dipl.-Ing. Markus Hofer Pfaffenwaldring 31 • 70569 Stuttgart hofer@ike.uni-stuttgart.de +49 (0) 711 685-60855 Bachelor or Master Thesis

Thermodynamic Optimization of a Recompression sCO₂ Cycle

Figure 1: Recompression sCO₂ cycle

